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Buoyancy-driven interactions of viscous drops
with deforming interfaces
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Experiments were conducted on the interactions of two different-sized deformable
drops moving due to gravity in an immiscible viscous fluid at low Reynolds number.
As the drops come close to each other, several interactions are possible: (i) separation
of the drops, (ii) capture of the smaller drop behind the larger drop, (iii) breakup of
the smaller drop into two or more drops, and (iv) pass-through of one drop through
the other, with possible cycle interaction or leap-frogging. The interactions depend on
several system parameters, including the drop-to-medium viscosity ratio, the radius
ratio of the two drops, the initial horizontal offset of the two drops at large vertical
separation, and the gravitational Bond number (which represents the ratio of buoyant
forces to interfacial tension forces for the larger drop and describes how much the
drops will deform). Experimental analysis was conducted by videotaping trajectories
of glycerol–water drops of various compositions falling in castor oil. The results show
good agreement with available theoretical results, both for interaction maps and
individual trajectories. The results also provide data beyond the present limitations
of theoretical algorithms and reveal the new pass-through phenomenon.

1. Introduction
The study of deformable drops in low Reynolds number flow is applicable to

emulsion sedimentation and creaming, polymer blending, liquid–liquid extraction,
and magma interactions. For linear flows, there have been several recent experimental
works (Guido & Simeone 1998; Tretheway, Muraoka & Leal 1999; Hu, Pine & Leal
2000) on two colliding drops which examined the effects of small deformation on
coalescence. Also, for selected physical systems in thermocapillary motion, pairwise
interactions of bubbles (Wei & Subramanian 1994) and drops (Nallani & Subra-
manian 1993) have been studied to describe the hydrodynamics. We also note the
extensive literature concerning high-speed collisions of drops (e.g. Qian & Law 1997;
Orme 1997; Ashgriz & Poo 1990; Menchaca-Rocha et al. 1997).

Nonetheless, for the case of two drops or bubbles in buoyancy motion at low
Reynolds number, experimental investigations have been limited. Of relevance here are
studies on slightly deformable drops (Zhang, Davis & Ruth 1993), on the behaviour of
pairs of drops made from dilute dispersions of microscopic particles in the absence of
interfacial tension (Machu et al. 2001), and on the enhanced coalescence phenomena
observed with highly deformable air bubbles rising in corn syrup (Manga & Stone
1993, 1995). Although it has been demonstrated (Yiantsios & Davis, 1990, 1991) that
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Figure 1. Sketch of the experimental setup for buoyancy-driven motion of deformable drops.

small deformation inhibits coalescence due to the slower film drainage, Manga &
Stone (1993, 1995) showed that moderate deformations cause two drops to align and
may result in enhanced coalescence rates. Using boundary-integral methods, related
calculations by Zinchenko, Rother & Davis (1997, 1999) and Davis (1999) show that
the drop-to-medium viscosity ratio is crucial to the outcome of two-drop interactions.
At viscosity ratios close to zero, as in the case of bubbles, alignment and enhanced
coalescence take place. In contrast, at viscosity ratios close to unity, breakup of the
smaller trailing drop is possible, as are more complicated interactions.

By using a mixture of glycerol and water for the drop phase to control the viscosity
ratio relative to a castor-oil medium, the experiments described here were performed
to evaluate the theoretical findings and move beyond the limitations of the simulations
to provide a more comprehensive picture of the possible behaviours. The details of the
experimental procedures are provided in § 2. Then, in § 3, experimental results and com-
parison with theory are presented. Concluding remarks make up the final section, § 4.

2. Materials and methods
The experimental apparatus, which is similar to those used previously for slightly

deformable drops (Zhang et al. 1993) and highly deformable bubbles (Manga & Stone
1993, 1995), is shown in figure 1. Made of 3/4 in. Plexiglas, the tank is 40 cm× 40 cm
in the horizontal plane, with a height of 120 cm. A Pulnix 7-CN CCD camera is
mounted on a motor-driven stand, so that the drops remain in the image as they
fall. The interactions are then recorded on a Sony SLV-400 VCR, viewed on a Sony
SSM-125 monitor, and analysed. For a few experiments, still photographs were taken
for illustrative purposes at successive times with an Olympus OM-1 35 mm camera.
To illuminate the drops, the tank was lit from behind by two Phillips 34 W fluorescent
light bulbs.

The drop sizes are controlled (typically to within ±2% by diameter) by two
Gilson Pipetman microdispensers with capacity 1000 µl. For drops larger than 1 ml, a
Pipet-aid (Drummond Scientific, Serial No. D 33943) and 10 ml Fisherbrand plastic
serological pipets (Fisher Scientific, Catalog No. 13-676-10s) were used to deliver the



Buoyancy-driven interactions of viscous drops 255

µ′/µe ρ′/ρe σ T
System wt. % H2O (g cm−1 s−1) (g cm−3) (dyn cm−1) (◦C)

1 75 0.0184/8.67 1.06/0.948 20 23
2 16 0.748/7.73 1.21/0.948 13 24
3 1.6 7.53/7.73 1.24/0.948 12 24

Table 1. Properties of three glycerol–water/castor oil systems used in experiments.

drops. The smaller drop is introduced first and allowed to settle at least 8–10 cm
before the second, larger drop is introduced which catches up and interacts with the
first drop. Drop radii were varied in the range 0.15–0.83 cm, with the corresponding
Reynolds numbers (based on the radius and isolated velocity of the larger drop) in the
range 0.008–0.4. Two pipet holders, whose position can be controlled by clamps along
a horizontal bar, determine the horizontal offset between the drops. The experiments
were performed at room temperature (23–24 ◦C), and the fluid temperature was
typically measured to within 0.2 ◦C prior to each experiment. When each videotape
was reviewed, it was verified visually that the plane of motion was perpendicular to
the camera.

By varying the amount of water mixed with glycerol to make the drops, the drop-
to-medium viscosity ratio can be changed from 0.001 to 1.5. For the results discussed
below, three drop compositions were used: 1.6%, 16% and 75%, where the percentage
is that of water by weight. Castor oil served as the viscous, suspending liquid. In
table 1, the physical properties of the three systems at their nominal temperatures
are listed, where µ′ and ρ′ are the viscosity and density of the drop phase, µe and ρe
are those of the matrix, and σ is the interfacial tension. Density measurements were
conducted by weighing a known volume on a Mettler AE100 electronic mass balance.
Viscosity measurements were made with Cannon Fenske Routine Viscometers (N745,
size 450; KIMAX, No. 46460, H33, size 150). For each solution tested, six timed
viscosity runs were conducted, and the results were averaged to obtain the value of
the viscosity at the recorded temperature. The measured values of ρ′ and µ′ are in
good agreement with handbook values (Mellan 1970).

The interfacial tension σ was measured by a pendant drop apparatus using the
procedure outlined in Ambwani & Fort (1979). The data indicate that the interfacial
tension increases linearly with water content according to the best fit

σ = 0.107x+ 11.8, (1)

where σ has units dyn cm−1 and x is weight % H2O.

3. Results and discussion
3.1. Isolated drop velocities

Figure 2 presents single drop velocities, Vexp, made dimensionless by the Stokes settling
velocity, VSt, of a rigid sphere:

VSt =
2(ρ′ − ρe)ga2

9µe
, (2)

where a is the undeformed drop radius and g is the gravitational acceleration. The
dashed line connects the experimental values, where the error bars are plus and minus



256 J. Kushner IV, M. A. Rother and R. H. Davis

2.0

1.5

1.0

0.5

0
10–3 10–2 10–1 100

3

2

1

l̂

Vexp

VSt

Figure 2. Isolated drop velocities Vexp made dimensionless by the Stokes settling velocity VSt as a
function of viscosity ratio µ̂. The dashed line joins the experimental values, which are shown as
plus-and-minus one standard deviation from the mean, and the solid line is the theoretical curve.
The three systems of table 1 are identified.

one standard deviation from the mean. The solid line is the theoretical curve for the
velocity of an isolated drop provided by the Hadamard–Rybczynski formula:

V (0)

VSt
=

(µ̂+ 1)

(µ̂+ 2/3)
, (3)

where µ̂ = µ′/µe is the drop-to-medium viscosity ratio. The Reynolds number for
figure 2 is in the range 0.008–0.2, as a broad range of drop sizes was used. Theory
and experiment are in good agreement for µ̂ > 0.03. Surfactant contamination in the
water is a possible explanation for the rigid-interface behaviour observed at low µ̂
(high weight % H2O). Further discussion of sources of experimental error is given in
§ 3.2 below.

3.2. Characteristic interactions of two glycerol–water drops

The parameter space for two-drop interactions was investigated for the three systems
in table 1. Several different types of interactions were observed, which can be broken
down into four basic categories: separation, capture, breakup, and pass-through. These
interactions depend on the viscosity ratio, µ̂ = µ′/µe, the size ratio, k = a1/a2 < 1
(the subscript 1 refers to the smaller drop, while 2 is for the larger drop), the initial
dimensionless horizontal offset (at large vertical offset), ∆x0/a2, and the gravitational
Bond number:

Bo = (ρ′ − ρe)ga2
2/σ. (4)

Two spherical drops may coalesce in the absence of any attractive force due to
an integrable singularity in the hydrodynamic resistance (Zinchenko 1982; Davis,
Schonberg & Rallison 1989; Zhang & Davis 1991), while small but finite deformation
prevents contact in a finite time (Yiantsios & Davis 1990, 1991). However, macroscopic
deformation of the drop or bubble interfaces causes changes in the velocities that
result in alignment and possible capture or entrainment events (Manga & Stone 1993,
1995). At low viscosity ratios (µ̂ � 1), coalescence is promoted by the interfacial
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t = 0 s 7.2 s 10.4 s 13.6 s 19.7 s 26.7 s

t = 0 s 7.2 s 10.4 s 13.6 s 19.7 s 26.7 s

Figure 3. Experimental images and theoretic predictions of the drop shapes for Run 1
(see table 2), a trajectory leading to separation.

shape variations (Manga & Stone 1993, 1995), but when µ̂ = O(1), the trailing
smaller drop may experience sufficient viscous drag in the extensional flow behind the
larger one to induce breakup (Zinchenko et al. 1997, 1999; Cristini, Blawzdziewicz &
Loewenberg 1998; Davis 1999). More exotic behaviours have also been observed in
boundary-integral simulations (Zinchenko et al. 1999; Davis 1999) and experiments
(Machu et al. 2001).

Separation

An example of separation interaction is illustrated in figure 3. Separation between
two deformable drops will occur at values of ∆x0/a2 above a critical value of the
offset for each Bond number, as well as below some critical Bond number where
only separation occurs for any value of ∆x0/a2. To keep presentation compact, the
physical conditions for figure 3 and subsequent example interactions are summarized
in table 2 by reference to run number. The Reynolds number in table 2 is defined
as Re = ρeV

(0)
2 a2/µe, where V (0)

2 is the isolated velocity from (2) and (3) for drop 2.
In figure 3, an experimental trajectory is shown for Run 1. The drops deform, but
they separate after interacting. Below the experimental pictures, a series of boundary-
integral simulations (using the code of Zinchenko et al. 1999) is presented at the same
time instants as the experimental ones, demonstrating qualitative agreement but with
the drops predicted to approach more closely and separate more slowly than observed
experimentally, possibly due to surfactant effects.

Figure 4 is a graph of the centroid-to-centroid distance r made dimensionless by
a2 vs. the angle θ between vertical and the line of centroids for the experiment in
figure 3. An additional trajectory with constant horizontal offset (no interaction) is
shown as a dotted line for comparison. Again, it is seen that the drops did not
move as close together as predicted by the boundary-integral simulation, and they
subsequently moved apart more readily for θ > π/2. The discrepancy may be due, in
part, to surfactant contamination causing Marangoni stresses in this system of high
water content. In addition, the viscosity of the castor oil varies by more than 10%
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Run System k µ̂ Bo ∆x0/a2 Re

1 1 0.81 0.002 1.8 2.0 0.090
2 2 0.77 0.1 5.8 2.3 0.17
3 1 0.80 0.002 0.71 0.15 0.021
4 3 0.66 1.0 5.6 0.70 0.11
5 3 0.87 1.0 7.1 1.6 0.16

Table 2. Parameters of experimental runs described in text.
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Figure 4. Experimental (solid circles) and theoretical (solid line) drop trajectories for separation
under the same conditions as figure 3, shown as dimensionless centroid-to-centroid distance r/a2 vs.
the angle θ between vertical and the line of centres. The dotted line is a trajectory with constant
horizontal displacement.

with a temperature change of 1 ◦C (see table 1), and so small temperature differences
may noticeably affect the time scale.

Capture and coalescence

Run 2 (illustrated in figures 5 and 6) is an example of capture, when the smaller
drop is passed by the faster-moving larger drop, entrained behind it, and then pulled
into a dimple in the rear of the now leading larger drop. Possible tip streaming
from the smaller drop was observed visually at times corresponding to those between
frames 4 and 5 of figure 5, though the phenomenon is difficult to discern in the still
photographs. A discussion of the likelihood of surfactant contamination with System
2 is found in the discussion of breakup and passthrough in § 3.3. Unambiguous
evidence of tip streaming was seen in comparable capture runs with System 1. As
described in the literature (de Bruijn 1993; Sherwood 1984), tip streaming occurs
when a dilute surfactant accumulates and causes low interfacial tension close to the
sharp ends of drops. Subsequently, the shear stresses exerted by the continuous phase
pull out a stream of droplets from the tip. The computational results predict that a
wedge-shaped cusp forms at the end of the trailing drop, and smoothing (Zinchenko
et al. 1999) must be used to extend the simulation when the smaller drop is held
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t = 0 s 2.2 s 4.2 s 6.2 s 8.2 s 10.4 s

t = 0 s 2.2 s 4.2 s 6.2 s 8.2 s 9.2 s

Figure 5. Experimental images and theoretical predictions of the drop shapes for Run 2 (see
table 2), a trajectory leading to capture. The boundary-integral code cannot proceed beyond the
last frame in the simulation.

inside the larger one. Even with smoothing, however, the boundary-integral results
cannot proceed beyond t = 9.2 s for this case. Nevertheless, the simulations with
smoothing are in good agreement with the experiments and indicate capture by a
strong reduction in r/a2 as θ → π (see figure 6).

For the case of figure 5, coalescence was not observed before the pair reached the
bottom of the tank. For smaller drops, however, film drainage from the gap is quicker
due to a decreased region of deformation, and formation of a single drop after film
rupture is often seen. In fact, coalescence was observed for all values of µ̂ at k = 0.8
in a small range of Bond numbers just above the critical value for capture in most
cases. In the lower part of figure 6, a series of experimental images (captured from
videotape for Run 3 in table 2) is shown just prior to, during, and after coalescence.

Breakup

The third basic category of interaction of two deformable drops is breakup, which
is illustrated in figure 7 for Run 4 of table 2. In the experiments, the trailing drop
stretches in the extensional flow behind the larger drop, before breaking into four
daughter drops. In the simulation, the drops separated more rapidly than observed
experimentally, and so the smaller drop does not become as extended and it pinches
off sooner due to the weakening of the local extensional flow as it recedes from the
larger drop.

Various modes of breakup of the smaller drop behind the larger drop were observed,
depending on the system parameters. For size ratios close to unity and/or very large
Bond numbers, the smaller drop became very long and then experienced a capillary-
type breakup into numerous (50+, in some experiments) tiny drops. On the other
hand, for smaller size ratios and Bond numbers only slightly greater than the critical
value for breakup, the smaller drop remained more compact and broke into a few
daughter drops of comparable size (as seen in figure 8); a similar behaviour was
seen for small initial horizontal offsets. Finally, if the initial horizontal offset was just
below the critical value (above which separation without breakup occurred), then a
very small tail broke off from the relatively large head of the smaller drop.
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Figure 6. Experimental (solid circles) and theoretical drop trajectories for capture under the same
conditions as figure 5, shown as dimensionless centroid-to-centroid distance r/a2 vs. the angle θ
between vertical and the line of centres. The solid line is theory for a conventional boundary-integral
run, while the dashed line has some exponential smoothing to alleviate the cusp (ε = 0.01, Zinchenko
et al. 1999) and allow continuation until capture is evident. The dotted line is a trajectory with
constant horizontal displacement. Below the graph are experimental images captured from video
of Run 3 (see table 2) showing drop coalescence. The total time elapsed between the first and last
images is about 4 s.

Pass-through

The fourth basic category of interactions observed is the new pass-through or
leap-frog interaction, which is shown in figure 8 for Run 5 of table 2. This interaction
occurs for cases of severe drop deformation, much like the breakup interaction. The
distinction between when breakup and pass-through occur depends mostly on the
horizontal separation of the two drops. At high Bond numbers, breakup will occur
in a region near the critical offset or demarcation between separation and breakup,
while pass-through occurs when the drops are closer together. The qualitative features
of the experiment are evident, although the drops were observed to move together
more quickly than predicted, possibly due to inertia effects and/or uncertainties in
viscosity measurements.

From a comparison of figures 7 and 8, it can be seen that the pass-through
interaction begins in a similar fashion to that of the breakup interaction, with the
smaller drop moving to the rear of the larger drop and then stretching and breaking.
The difference in the two interactions occurs because the drop that was formed from
the head of smaller drop during breakup in figure 8 is still large enough to be
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t = 0 s 6.0 s 11.6 s

16.8 s

21.3 s 27.8 s

t = 0 s 6.0 s 11.6 s 14.9 s

Figure 7. Experimental images and theoretical predictions of the drop shapes for Run 4 (see
table 2), a trajectory leading to breakup. The boundary-integral code cannot proceed beyond the
last frame shown in the simulation.

captured by the larger drop. However, due to the highly deformable nature of this
new two-drop system, the smaller drop does not simply sit on top of the larger drop,
but instead passes through a hole which forms in the centre of the larger drop. After
it emerges at the front (bottom) of the larger drop, it passes around to the rear of the
larger drop due to buoyancy and the difference in sizes, and the pass-through process
may be repeated. In this case, the phenomenon is reminiscent of leap-frogging, such
as has been simulated for two pairs of particles or drops in which the trailing pair
moves faster and replaces the leading pair under appropriate configurations (Manga
& Stone 1995; Hocking 1964; Durlofsky, Brady & Bossis 1987).

The pass-through or leap-frog phenomenon is too complex for the current three-
dimensional boundary-integral simulations. However, the early stages of pass-through
were simulated for axisymmetric Stokes motion by Davis (1999). He showed that a
dimple forms on the rear of the leading drop and that, for viscosity ratio near unity,
the dimple can form a plume which passes through the axis of the drop so that a
torus is formed. At sufficiently high Bond numbers, the head of the trailing drop is
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t = 0 s 2.7 s 5.6 s 8.1 s 10.6 s 13.4 s

t = 0 s 2.7 s 5.6 s 8.1 s 10.6 s 11.9 s

16.3 s 19.2 s 23.0 s 25.4 s 28.0 s

Figure 8. Experimental images and theoretical predictions of the drop shapes for Run 5 (see
table 2), a trajectory leading to cyclic pass-through. The boundary-integral code cannot proceed
beyond the last frame shown in the simulation.

sucked into this plume, although the code was not able to simulate breakthrough of
the trailing drop and its emergence on the other side. In recent work with ‘drops’
formed by dilute clouds of small particles, Machu et al. (2001) also observed torus
formation and the passage of the trailing drop into the centre of the leading drop, and
they were able to simulate the motion by treating individual particles with Stokeslets.
Related investigations of axisymmetric behaviour at higher Reynolds numbers have
been reported in experiments on vortex rings formed by two drops (Baumann et al.
1992; Joseph & Renardy 1993). In their work, Joseph and coworkers describe how
the membrane, which thins as a vortex ring forms from a drop, sometimes ruptures
as another drop, or vortex ring passes through it, and they call the interaction ‘poke-
through’. Using vortex rings made visible by smoke, Yamada & Matsui (1978, 1979)
have illustrated a ‘mutual slip-through’ interaction in which a trailing smoke ring
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passes through a leading smoke ring, whereupon the process is repeated. Faber (1995)
refers to this process as ‘leap-frogging’.

In studies with single viscous drops, Kojima, Hinch & Acrivos (1984) showed that
an infinitesimal indentation in the rear of a sedimenting drop will grow only in
the limit of zero interfacial tension, while Koh & Leal (1989) and Pozrikidis (1990)
showed that the dimple will grow to form a plume and convert the drop to a torus
only if the initial deformation is sufficiently large for finite interfacial tension. For
the interaction of two drops, the flow field created by the trailing drop causes the
leading drop to flatten, initially into a prolate shape and then with a dimple at its rear.
The recirculation pattern in the leading drop driven by the external flow represents
a pumping action which causes the dimple to grow and, if the restoring interfacial
tension forces are weak (high Bo), form a plume. Tiny air bubbles entrained in the
drops for a few of our experiments confirmed the internal flow pattern which leads
to dimple growth and plume formation.

There are several different variations in the pass-through interaction that can
occur after the smaller drop passes through the larger one. If the two drops cleanly
separate and are perfectly uniaxial, it is possible, though very rare, that the larger
drop subsequently may be pulled through the smaller drop in a manner similar to the
general pass-through interaction described above. Otherwise, the smaller drop will be
forced to the side of the larger drop and then move around to its rear. If a large
amount of material from the smaller drop was lost during its breakup in the initial
pass-through interaction, the larger drop will then leave the smaller drop behind.
However, if only a small amount of material was lost during the initial breakup, the
smaller drop will be passed through the larger drop again, as shown in figure 8, so
that leap-frogging occurs. While at most three complete leap-frog interaction cycles
were observed in the experiments before the bottom of the tank was reached, leap-
frogging will otherwise continue until the smaller drop has lost enough material by
breakup that separation occurs or until the two drops coalesce during a pass-through
interaction. In the limit of infinite Bond number or no interfacial tension, the two
drops keep mixing together in the recirculating flow (Machu et al. 2001).

3.3. Two-drop interaction maps

Interaction maps are presented in this section. To study capture, System 1 was used
for size ratios k = 0.7 and 0.8. To also study breakup and pass-through, Systems
2 and 3 were used with k = 0.8. In conducting these experiments, values of k with
errors less than ± 0.015 from the target values were deemed acceptable for addition
to the interaction maps. In all cases, the initial horizontal offsets were extrapolated
to infinite vertical separation, using far-field mobility functions for spherical drops at
large separations. Comparisons are made with the predictions from boundary-integral
simulations by Zinchenko et al. (1999). These simulations also show that the initial
vertical separation of at least 10 times the larger drop radius in the experiments is
sufficient to determine the critical offset for infinite initial separation to within 3%.

Capture and coalescence

In figure 9, for System 1 with µ̂ = 0.002 and k = 0.7, good agreement in the
offsets is observed between theory and experiment for the critical Bo which delineates
separation and capture. The open symbols are for experiments which ended in
separation of the two drops, whereas the closed symbols are for experiments where
capture occurred. The dashed line demarcates the experimental boundary between
separation and capture, whereas the solid line is the corresponding prediction from
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Figure 9. Interaction map for µ̂ = 0.002 and k = 0.7. Filled symbols represent capture events, while
hollow ones are for separation. The solid line marks theory (Zinchenko et al. 1999), with capture
below the line and separation above the line, and the dashed line is a fit of the experiments.

Zinchenko et al. (1999). As expected, when the initial horizontal offset exceeds a
critical value for a given Bond number, the drops do not come sufficiently close
for capture to occur. Moreover, the critical offset increases with increasing Bo as
the deformation-induced alignment becomes greater. The most striking though well-
established (Manga & Stone 1993, 1995) feature in figure 9, and figure 10 below, is
that the capture cross-section of very deformable drops and bubbles at low viscosity
ratios can be much greater than that for spherical ones. At Bo < 2.25, no theory
is yet available due to limitations of the present code for very small gaps, but an
experimental turning point was found where the critical offset dropped to zero. Thus,
for Bo < 1.8, no capture is seen. For k = 0.7, no coalescence was observed because,
even at the smallest Bo where capture still occurs, the film drainage requires more
time than it takes for the drops to fall the length of the tank.

In figure 10, for System 1 with µ̂ = 0.002 and k = 0.8, there is also reasonable
agreement in the critical offsets, though the agreement is not as good as in figure 9
for the larger values of Bo. The increased error could be due to more significant wall
effects, as well as finite inertia, since the critical offsets are larger due to the increased
size ratio. Limitations in the present boundary-integral algorithm prohibit critical
offset determination below Bo = 1.5 for this case. Experimental results were obtained
down to Bo = 0.5, yielding three interesting results. The first is a levelling off of the
critical offset curve at a value of 1.8 for the dimensionless horizontal separation. The
second is the complete end of all capture interactions below Bo = 0.6, which is much
lower than observed in figure 9 for k = 0.7. The final result to note is the presence
of the two separate regions of capture with and without coalescence. Simple capture
(without coalescence by the time the bottom of the tank is reached) occurs for Bo >
0.9, while capture with coalescence occurs for 0.65 6 Bo 6 0.9. It should be noted
that the distinction between capture with and without coalescence is one due solely
to the finite size of the tank.

Both the isolated drop velocities and the presence of tip streaming seem to indicate
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Figure 10. As figure 9 but for µ̂ = 0.002 and k = 0.8.
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Figure 11. As figure 9 but for µ̂ = 0.1 and k = 0.8. Filled symbols represent capture and
pass-through events.

surfactant contamination in System 1. However, an interesting feature of figures 9
and 10 is that the theoretical and experimental critical capture offsets match well for
both size ratios (k = 0.7 and 0.8). We suspect that the good agreement is due to
surfactants being swept to the tails of the drops early in runs where capture occurs,
so that their effect is minimal.

Breakup and pass-through

In figure 11, for System 2 with µ̂ = 0.1 and k = 0.8, breakup with capture and pass-
through are indicated, in addition to simple capture. In the pass-through behaviour at
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Figure 12. As figure 9 but for µ̂ = 1 and k = 0.8. Filled symbols represent breakup and
pass-through events, while hollow ones are for capture and separation without breakup.

µ̂ = 0.1, however, coalescence occurs rather than the leap-frog cycling of figure 8. The
solid line, based on the simulations of Zinchenko et al. (1999), again demonstrates
good agreement between theory and experiment. As seen before, capture occurs when
the initial horizontal offset is below a critical value that increases with Bo, and the
critical offset for capture of very deformable drops and bubbles can be much greater
than that for even non-interacting fluid particles. Simultaneous breakup of the smaller
drop can also occur, as predicted in the previous simulations (Zinchenko et al. 1999),
for moderate Bo and offsets just below critical. For System 2, it was difficult to
discern whether a small amount of breakup or tip-streaming took place. Evidence
of the absence of surfactants for System 2 is the excellent agreement in the isolated
drop velocities between theory and experiment (figure 2) and the good agreement in
critical offsets (figure 11) over the entire range of Bond numbers. For these reasons,
in figure 11, we have labelled questionable runs ‘capture with breakup’, rather than
‘capture with tip-streaming’.

Pass-through ending in coalescence was observed at large Bo for highly deformable
drops, whereas coalescence without pass-through was observed at small Bo for less
deformable drops. Unlike in the previous two interaction maps, a sharp decline in the
critical offset curve and a critical Bond number below which no capture occurred are
not observed. Due to the small size of the drops relative to the tank dimensions, it
was only possible to obtain results down to Bo = 0.7 with the present apparatus. A
smaller tank or better optics might be able to provide results in the extremely low Bond
number region, which would result in bounding the capture with coalescence region.

A map for System 3 with µ̂ = 1 and k = 0.8 is shown in figure 12. In the theoretical
analysis of Zinchenko et al. (1999), critical offset values were calculated for the
transition between breakup and separation interactions, and the results are shown as
the solid line. In this figure, the closed symbols are for experiments in which breakup
of the smaller drop occurred (including pass-through, which was always accompanied
by stretching and breaking of the tail of the smaller drop), whereas the open symbols
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Figure 13. A schematic interaction map illustrating the characteristic behaviours observed in the
experiments and their dependence on viscosity ratio µ̂ and size ratio k.

are for either separation or capture without breakup. Simple breakup was observed
for moderate Bo and initial horizontal offsets just below the critical value, whereas
pass-through with breakup was observed for larger Bo and smaller initial offsets.
For Bo < 3, the smaller drop did not deform enough to break. There is again good
agreement between the theoretical predictions and the experimental results, except
that they begin to diverge for Bo > 9, which may be due to wall or inertial effects.

In the theoretical analysis, it was assumed that, for Bo < 3, where the critical
offset curve between breakup and separation ends, the only interaction that would be
observed is the separation interaction (Zinchenko et al. 1999). From the experimental
findings, it is clearly seen that this is not the case, as defined regions for capture
with and without coalescence exist for Bo < 3 in which deformation enhances
coalescence beyond spherical drop limitations. The simulations were also not able to
predict the pass-through interactions, which were observed for Bo > 5. In this map,
several variations of the pass-through interaction were observed: cyclic or double
pass-through (also called leap-frogging), pass-through followed by complete breakup
and separation of the smaller drop, and pass-through followed by coalescence. The
distinction between the cyclic pass-through interaction and pass-through followed
by separation or coalescence depends on the tank height, as all cyclic pass-through
interactions, in an infinitely deep tank, will end either in separation of the broken
smaller drop from the leading larger drop, or coalescence of the primary smaller drop
with the larger drop.

It is also noted that the mechanisms for capture with coalescence found at the
intermediate and large Bond numbers are significantly different from that at small
Bond numbers. For small Bo, the smaller drop is entrained behind the larger drop
with relatively small deformation (e.g. see figure 6) and there is a significant time
delay before coalescence occurs since the castor oil film must drain from the film
between the drops. For larger Bo, the deformation is much greater and the smaller
drop becomes enveloped within the large dimple or plume which forms at the rear
of the larger drop without the smaller drop being sucked through. This arrangement
results in the eventual coalescence of the two drops and the inclusion of a small drop
of castor oil inside the now single glycerol–water drop. In figure 11, coalescence with
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inclusion of a castor oil droplet was observed in three runs indicated by filled square
symbols at Bo = 4.62, 7.30, and 7.41. All other capture events leading to coalescence
in figure 11 occurred at Bond numbers of 1.5 or less and without entrainment of any
castor oil. This distinction between the two coalescence mechanisms is similar to nose
capture and rim capture predicted by Yiantsios & Davis (1991).

A final, semi-quantitative map is presented as figure 13 showing the boundaries
between separation, capture, breakup and pass-through. General trends, based on
viscosity ratio and size ratio, are indicated by arrows. Capture, breakup and pass-
through all strongly depend on size ratio, so that as k increases, the critical Bond
number at which the various phenomena occur decreases. As described in Davis
(1999), at µ̂ ≈ 0.5, the critical Bond number for breakup is a minimum. As the
viscosity ratio increases or decreases, the effect of breakup becomes less significant.
At very small viscosity ratios, no breakup or pass-through takes place and capture is
a predominant interaction.

4. Concluding remarks
Experiments on buoyancy-driven interactions of two glycerol–water drops in castor

oil were conducted at low Reynolds numbers to compare with results from boundary-
integral calculations. At small drop-to-medium viscosity ratios and moderate to large
Bond numbers, drop capture and possible coalescence were observed, in agreement
with theory. In addition, at O(1) viscosity ratios, drop breakup was seen, similar to
results from simulations. At higher Bo, some discrepancy was observed, with theory
overpredicting critical horizontal offsets for capture and breakup, possibly due to
wall effects and inertial effects with increasing drop size. At moderate viscosity ratios
and moderate to large Bond numbers, new pass-through phenomena were recorded
in which the leading drop formed a torus and the smaller drop passed through its
centre, sometimes in multiple cycles reminiscent of leap-frogging.
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